An Explicit Time Marching Scheme for Efficient Solution of the Magnetic Field Integral Equation at Low Frequencies

نویسندگان

چکیده

An explicit marching-on-in-time (MOT) scheme to efficiently solve the time-domain magnetic field integral equation (TD-MFIE) with a large time step size (under low-frequency excitation) is developed. The proposed spatially expands current using high-order nodal functions defined on curvilinear triangles discretizing scatterer surface. Applying Nyström discretization, which uses this expansion, TD-MFIE, written as an ordinary differential (ODE) by separating self-term contribution, yields system of ODEs in unknown time-dependent expansion coefficients. A predictor-corrector method used integrate for samples these Since Gram matrix arising from discretization block-diagonal, resulting MOT replaces “inversion” required at each product inverse block-diagonal and right-hand side vector. It shown that, convergence corrector updates, produces same solution its implicit counterpart faster sizes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution to the Electric Field Integral Equation at Arbitrarily Low Frequencies

The low-frequency breakdown problem in electric field integral equation (EFIE) has been well recognized and extensively studied. State of the art methods for solving this problem either reformulate the integral equations or introduce a different set of basis functions. The solution to the original full-wave EFIE with the Rao-Wilton-Glisson (RWG)-basis remains unknown at breakdown frequencies. T...

متن کامل

N‎umerical ‎q‎uasilinearization scheme ‎for the integral equation form of the Blasius equation

‎The ‎method ‎of ‎quasilinearization ‎is ‎an ‎effective ‎tool ‎to ‎solve nonlinear ‎equations ‎when ‎some ‎conditions‎ on ‎the ‎nonlinear term ‎of ‎the ‎problem ‎are ‎satisfi‎‎ed. ‎W‎hen ‎the ‎conditions ‎hold, ‎applying ‎this ‎techniqu‎e ‎gives ‎two ‎sequences of ‎coupled ‎linear ‎equations‎ and ‎the ‎solutions ‎of ‎th‎ese ‎linear ‎equations ‎are quadratically ‎convergent ‎to ‎the ‎solution ‎o...

متن کامل

An Efficient Implementation of Phase Field Method with Explicit Time Integration

The phase field method integrates the Griffith theory and damage mechanics approach to predict crack initiation, propagation, and branching within one framework. No crack tracking topology is needed, and complex crack shapes can be captures without user intervention. In this paper, a detailed description of how the phase field method is implemented with explicit dynamics into LS-DYNA is provide...

متن کامل

Solution of a Time-domain Magnetic-field Integral Equation for Arbitrarily Closed Conducting Bodies Using an Unconditionally Stable Methodology

In this work, we present a new and efficient numerical method to obtain an unconditionally stable solution for the time-domain magnetic-field integral equation (TD-MFIE) for arbitrarily closed conducting bodies. This novel method does not utilize the customary marching-on-in-time (MOT) solution method often used to solve a hyperbolic partial-differential equation. Instead, we solve the wave equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Antennas and Propagation

سال: 2021

ISSN: ['1558-2221', '0018-926X']

DOI: https://doi.org/10.1109/tap.2020.3010997